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Abstract— This paper focuses on problems associated with
the deployment of automatic agents for last-mile delivery.
We propose a framework and methodology to systematically
evaluate and compare different hybrid strategies. Performance
metrics in agent noise, delivery time, energy consumption,
coverage rate, package throughput, and system costs are defined
rigorously and modeled mathematically. Using the methodology,
we conduct a case study in the city of Boston for four agent
delivery strategies, including a hybrid strategy proposed in
this paper. The proposed strategy utilizes available space in
public transits’ cabins during off-peak hours to relocate the
agent traveling start locations. Simulations and analyses show
that hybrid strategies outperform the Agent-Only delivery
strategy in terms of noise exposure, energy consumption, and
coverage rate. The performance of hybrid strategies highly
depends on the characteristics of the ground transportation
methods accompanying agents. Thus, the methods of ground
transportation should carefully be examined and selected for
each case and strategy in real-world applications.

I. INTRODUCTION

Throughout the whole logistics process, the last-mile
phase of the delivery is especially labor-intensive [1], costly
[2], complex, unreliable, environmentally unfriendly [3], and
time-consuming. Agent delivery is a potential solution to
these problems by adopting robotic agents to complete the
delivery tasks automatically and desirably without human in-
tervention. The type of agents can be either unmanned flying
agents or autonomous ground vehicles. Amazon, Alphabet-
owned Wing, UPS, and FedEx all test intensively package
or product delivery using drones to increase efficiency and
reduce delivery costs [4], [5]. However, there is still a long
way for practical large-scale deployment of the technology,
especially in urban environments. Some of the problems
are demonstrated in this paper, including noise pollution
[6], aggregation of noise and traffic around the distribution
centers, low coverage rates by battery limitations, and high
energy consumption.

Several hybrid agent delivery strategies are proposed and
developed for the sake of a solution necessary for practical
large-scale agent delivery. The so-called hybrid strategies
refer to a network of heterogeneous multi-typed agents
teaming up to achieve the tasks collectively. The most well-
developed hybrid strategy is the Agents with Trucks (AWT)
strategy which combines conventional trucks and agents
as each other’s sidekicks [7], [8]. This strategy has been

1 Department of Mechanical Engineering, Massachusetts Institute
of Technology, Cambridge, MA, 02139, USA. kevxt@mit.edu,
youcef@mit.edu

2 Center for Complex Engineering Systems at KACST and MIT, Riyadh,
Saudi Arabia. aalalsheikh@kacst.edu.sa

intensively studied in the aspects of hardware design, system
integration [9], mathematical modeling [8], and routing and
scheduling problems [10], [11], [12], [13]. Another category
of hybrid strategies is to combine the agents with public
transit systems. An example of these strategies is the Agents
on Public Transits Delivery (AOPT) strategy. In AOPT, the
agents can be piggybacked by the public transit vehicles,
on which agents can rest to conserve energy and recharge
themselves [14]. In this paper, another hybrid strategy,
Agent-aided Public Transit Delivery (AAPT), is proposed
and analyzed. In this strategy, the packages are transported
by the spare space inside public transit cabins automatically.
The agents are only involved in the last stage to transport
packages to the final destinations from the nearest public
transit stations.

An essential problem in the robotic last-mile delivery
research is that systematic analysis and evaluation of these
hybrid strategies based on a unified methodology are still
lacking. On the one hand, previous studies on scheduling
or routing problems of one specific strategy focused sig-
nificantly on one or a few specific performance metrics
of the system, such as delivery time [12], [15], [16], [17]
and/or energy consumption [12], [16], [18]. Other metrics
of the strategy are not well evaluated or studied, which
may dramatically influence the efficiency and feasibility
of the strategies, including noise pollution, working range,
throughput, and system costs. On the other hand, previous
research on performance metrics addressed the modeling
or analysis of one specific metric instead of a systematic
evaluation of hybrid strategies.

Two metrics, namely energy consumption and acoustic
noise, attract more attention. Although the energy consump-
tion modeling of drone delivery is still an active research
area, Zhang et al. [19] carefully reviewed existing drone
energy consumption models and categorized these models
into integrated approaches and component approaches. Com-
ponent approaches, which are used in this paper, decompose
the energy consumption into either different sources or
different flight phases, and sum up these components to
achieve the desired fidelity. The analysis of noise propagation
is much more complicated. Sound propagation modeling is
mainly based on wave propagation theory [20]. And then,
atmospheric effects, e.g. molecular absorption [21], wind and
turbulence effects [22], Doppler effects [23], multi-path and
diffraction [24], are augmented and integrated into the model.
In addition to mathematical modeling, research on acoustic
noise heavily rely on experiments. Noise signals from various
drones, distances, velocities, surrounding conditions are mea-
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sured and analyzed in both temporal and frequency domains
[25], [26]. However, the results from such experiments are
difficult to generalize and adapt to a city scale. Thus, in this
paper, a simplified noise propagation model is adapted to
capture the main noise characteristics.

A systematic analysis and evaluation of different agent
delivery strategies based on a unified framework are essential
for the practical deployment of agent delivery. With this
framework and methodology, the strategies can be compared
with, and more resources can be inclined to a more com-
petitive strategy. However, to the best of our knowledge, this
work is the first to provide this understanding from a rigorous
perspective. The main contributions of this paper are sum-
marized as follows: 1) rigorous definitions of performance
metrics with reasonable fidelity. We especially focus on the
performance metrics that are still under active research or the
ones that are vague and lacking a mathematical formulation;
2) a methodology to systematically analyze different hybrid
agent delivery strategies within a unified framework; 3) a
novel hybrid strategy combining the advantages of public
transits and agent delivery; 4) sensitivity analyses of different
factors on the performance of hybrid strategies, including the
characteristics of the accompanying ground transportation
systems.

II. PERFORMANCE EVALUATION METRICS

In this section, we introduce the definitions of metrics for
the evaluation of different agent delivery strategies.

A. Agent Acoustic Noise

Acoustic noise from agents is the primary source of
annoyance in the last-mile delivery. The modeling of agent
noise is based on a simplified noise propagation model,
which assumes point noise source and spherical propagation
[20]. The noise intensity I(x,y)i (t) at a given location (x, y),
at time t and caused by the agent for the ith delivery task is

I
(x,y)
i (t) =

Pi

4πri(t)
2 (1)

where Pi is the power of the noise source, ri(t) is
the distance between point (x, y) and the noise source, t
represents time, and the subscript i is the index of the
delivery agent. Here, we assume that the parameters for each
delivery task may be different because of different models
of agents, payloads, weather conditions, and/or routes.

The annoyance of the agent noise and its corresponding
health issues are influenced by both the intensity and duration
of the noise. However, this relationship, which may be
affected by the noise tone and the context during which the
sound is heard, is still under active research [20]. Without
loss of generality, we assume that noise annoyance grows
linearly with the time duration. This assumption can be easily
updated after a more accurate model. Thus, we define a
metric called noise exposure E

(x,y)
i , which is defined for

a specific task index i and location (x, y) as







Noise Influence Region

Agent

Agent route

Fig. 1. Illustration of the noise influence region.

E
(x,y)
i ,

∫ T
(x,y)
i

0

I
(x,y)
i (t) dt (2)

where T (x,y)
i is the noise duration for a specific location

influenced by the ith delivery. T (x,y)
i is calculated as the

time during which the agent is in the noise influence region
illustrated in Fig. 1. When the agents operate outsides the
noise influence region, we assume that the influence of agent
noise is negligible. The noise influence region radius Ri is
defined as

Ri =

√
Pi

4πIa
(3)

where Ia represents the maximum allowable noise in-
tensity. After substituting (1) in (2), the noise exposure is
calculated to be

E
(x,y)
i ,

∫ T
(x,y)
i

0

I
(x,y)
i (t) dt (4)

=

∫ √Ri
2�di

2

�
√

Ri
2�di

2

Pi

4π

1

di
2 + z2 + hi

2

dz

ui
(5)

=
Pi

2πui
√
hi

2 + di
2
tan-1

(√
Ri

2 − di2√
hi

2 + di
2

)
(6)

where di is the normal distance from (x, y) to the delivery
route, ui is the agent velocity; hi is the agent working height,
and z is the distance between the agent and point C in Fig.
1.

According to the guideline of CDC [27], “A one-time
exposure to extreme loud sound or listening to loud sounds
for a long time can cause hearing loss”. Thus, three values
based on the average value, maximum value and standard
deviation should be carefully analyzed:

1) Average of the average noise exposure Ea: Ea is
defined as

Ea =

∫∫ ∑N
i=1E

(x,y)
i dxdy

S ·N
(7)

where N is the number of total deliveries, S is the area
of a region of interest. For example, S is the area of Boston,
MA, in the United States of America for the case study in this
paper. Ea reflects the average noise exposure performance
within the region of interest, which significantly influences
the residents’ comfort.
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2) Maximum of the average noise exposure Em: Em is
defined as

Em = max
(x,y)

∑N
i=1E

(x,y)
i

N
(8)

Em reflects the noise performance of the worst location
in terms of average noise exposures over a large number of
delivery tasks.

3) Standard deviation of the average noise exposure Es:
Es is defined as

Es = σ

(∑N
i=1E

(x,y)
i

N

)
(9)

where σ represents the operation of calculating the stan-
dard deviation. Es represents the uniformity of the average
noise exposure within the region. This value is also critical
in the following analysis to represent the aggregation of the
noise exposure within a region.

The modeling of acoustic noise is simplified in this paper
and can be improved in future research by incorporating
more agent behavioral properties and/or geography-based
properties of the surrounding environment.

B. Delivery Time

Delivery time reduction is a significant driving force
for agent delivery. To assess the delivery time of different
strategies, two key metrics are adopted, namely makespan
Mk and average delivery time DT k, where k represents the
abbreviation of different strategies.
Mk is defined as:

Mk = max
i
Mk

i (10)

where Mk
i is the time for strategy k to finish the delivery

task i. Thus, makespan Mk represents the total time to finish
all the deliveries with one strategy, which models the worst-
case scenario or the guaranteed delivery time for a shipper
using a specific strategy.

Average delivery time DT k is defined as:

DT k =

N∑
i=1

DT k
i /N (11)

where DT k
i is the delivery time for the ith delivery task

using strategy k. DT k represents the average delivery time
using one strategy.

C. Energy Consumption

Energy consumption of agent delivery is highly related
to carbon emissions, operational cost, and operation range
of agents. In this paper, we will use a component approach
to decompose the energy consumption of the entire delivery
journey into two components: energy consumption by agents
ECa

i , and energy consumption by ground transportation
other than agents ECg

i .
Ample research tried to address the modeling of agent

energy consumption. In 2021, Zhang et al. systematically

reviewed drone delivery energy consumption models. It is
found that existing models adopt highly various modeling
assumptions, and more studies are required to accurately
reflect the energy consumption [19]. Thus. in this paper,
data from empirical research and field experiments are used
to calculate ECa

i more accurately. The energy consumption
ECa

i is calculated as follows

ECa
i = Epml · dli + Epmu · dui (12)

where Epml and Epmu stands for energy per meter trav-
eled in the condition of loaded and unloaded, respectively,
and dli and dui are the loaded and unloaded travel distance of
the ith delivery. The relationship between Epml and Epmu

can be derived using a simplified drone energy consumption
model

Epm =
(m1 +m2 +m3)g

ρ · η
(13)

where m1, m2 and m3 represents the mass of the flying
agent’s structure, battery, and payload, respectively, g is the
gravity acceleration, ρ is the lift-to-drag ratio, and η is the
energy efficiency of the system. After assuming that the
payload m3 doesn’t influence other parameters in (13), the
relationship between Epmu and Epml is

Epmu

m1 +m2
=

Epml

m1 +m2 +m3
(14)

D. Coverage Rate

The limitation of battery capacity poses the operation
range limitation of agents. Thus, we propose a metric called
Coverage Rate CRk for strategy k. CRk is defined as

CRk =
W k

N
(15)

where N is the total number of delivery tasks in a given
period of time of interest, and W k is the number of packages
within the working range WRk

i of a strategy k and delivery
task i. CRk represents the percentage of delivery tasks,
which can be delivered by strategy k even though the flying
range of agents is limited by the battery capacity.

In some cases, only the value for unloaded flight range
FRk is unveiled by the manufacturer. Then the operational
range given the same routes back can be derived using (14)
to be

WR =
FR · Epmu

Epmu + Epml
=

FR · (m1 +m2)

2m1 + 2m2 +m3
(16)

E. Package Throughput

A main constraint of agent delivery is the low throughput
of the system, especially for drone delivery, which in general
has a very low load capacity per delivery.

The package throughput PT k for a strategy k in a given
period of time TI of interest can be calculated as

PT k = min
j
fkj ·mk

j · TI (17)
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Agent 
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Fig. 2. Agent delivery strategies. (a) Agent-Only Delivery (AO); (b) Agents
on Public Transits Delivery (AOPT); (c) Agents with Trucks Delivery
(AWT); (d) Agent-Aided Public Transit Delivery (AAPT). Agents or other
methods of transportation in red are the components carrying packages.

where j represents different methods of transportation in
the system, fkj is the frequency of the transportation j, mk

j

is the number of packages carried by the transportation j
once. The bottleneck methods of transportation in different
strategies should be carefully examined and analyzed.

F. System Costs

Cost reduction is another driving force for automatic agent
delivery. The analysis of system costs can be decomposed
into two parts, i.e. operational costs OC and capital costs
CC.

Operational costs are the costs accrued in the everyday
operation, including energy consumption, data transmission,
maintenance, labor, fees, etc. The performance of OC rep-
resents the cost performance in the long term.

Capital costs are one-time expenses incurred on the pur-
chase of agents, lands, trucks, infrastructure reconstructions,
etc. The value of CC reflects the costs required to make the
system commercially operable.

III. AGENT DELIVERY STRATEGIES

After defining the metrics, four agent delivery strategies,
whose working principles are illustrated in Fig. 2, are stud-
ied.

A. Existing Strategies

The first strategy, Agent-Only Delivery (AO), is the most
common agent delivery method widely adopted. The agents
carry the packages and travel directly between the distribu-
tion centers and the destinations, as illustrated in Fig. 2(a).

The two existing hybrid strategies shown in Fig. 2(b) and
Fig. 2(c) are Agents on Public Transits Delivery (AOPT)
and Agents with Trucks Delivery (AWT), which are well
documented in [14] and [8]. The key idea in AOPT is to allow
agents to be piggybacked on public transit vehicles. Thus
the flying distance required for each delivery is dramatically
reduced to alleviate the problems of AO. As for AWT, the
agents and trucks work as each other’s sidekicks. Trucks,
serving as a moving warehouse in this strategy, carry not only
the packages but also the agents that deliver the packages
from the trucks to the destinations.

B. Agent-Aided Public Transit Delivery (AAPT)

Agent-Aided Public Transit Delivery (AAPT) is proposed
in this paper, whose operation flow is shown in Fig. 2(d). In
the first step, packages are transported by robots or trucks
from the distribution centers to the nearest public transit
stations. The packages are then unloaded and organized in
a temporary storage. When the public transit arrives, the
packages are automatically loaded into the public transit
cabins. In the next step, the packages travel within the
public transit systems, just like passengers. If necessary, the
packages can even transfer between different public transits
automatically. When the packages arrive at the stations that
are the closest to the final destinations, the packages are
unloaded from the public transits and either delivered directly
to the customers or to another destination by agents.

The advantages of this strategy are apparent, especially for
packages whose customers chose a slightly longer delivery
time. Unlike other hybrid strategies, AAPT doesn’t involve
agents except for the last step. Thus, the agent numbers,
agent traveling distances, energy consumptions, and noise
emissions are dramatically reduced. Many people around
the world are conscious about the future of our planet, and
consequently make choices consistent with low emissions.
Moreover, this system can maximally exploit the spare space
and resources in public transits during off-peak hours.

Several factors may influence the feasibility and effective-
ness of this system. In AAPT, we will need to augment the
existing public transit systems with package stations and
automatic package transfer mechanisms between different
public transits. Moreover, the development of mechanisms
to store packages within cabins without sacrificing passenger
space and safety during peak hours is another challenge.
Even though package stations with agents are already devel-
oped [28], the real-world deployment of AAPT still requires
other technologies, which may impose intensive infrastruc-
ture reconstruction and substantial capital costs.

IV. SIMULATION SETUP AND METHODS

A. Simulation Setup

We take Boston, MA, in the United States of America for
the case study, and the setup is illustrated in Fig. 3. In the
simulation, 3000 delivery tasks originating from the Amazon
warehouse located at (-71.05417,42.39389) are generated
uniformly within the boundary of Boston. The data of bus
stops, bus routes, subway stations, and subway routes are
downloaded from the government website of the state of
Massachusetts [29], [30].

The type of agents in all the simulations are the same, an
Amazon prime air delivery drone. Thus we assume Pi = 1 w,
which doesn’t influence the comparison between strategies;
Ri = 500 m; hi = 121.92 m, which is the maximum FAA
approved operation height for unmanned aircraft systems
[31]; ui = 80 km/h [32].

In the computation of energy consumption and coverage
rate, we use the values of Epml = 46.1 J/m, which is based
on an experiment of the Amazon delivery drone [12]; m3 = 5
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lb [12], [33], m1 +m2 = 55 lb [32], [33]; FR = 15 miles
[34]. Epmu is calculated according to (14) to be 42.26 J/m.
Moreover, we further assume ECg

i = 0 J in this paper for
simplicity. There are two reasons for ECg

i = 0 J : 1) if the
strategy takes buses or subways as the methods of ground
transportation, the marginal energy consumption for a 5 lb
package is relatively low; 2) if the operation requires trucks,
the energy consumption per package for diesel trucks are
much lower than drones because of the high volume capacity
of trucks, especially in cities with denser populations [35].
However, for a more precise comparison and analysis, this
part of energy consumption should be modeled and taken
into consideration. It is also worth mentioning that the use
of diesel, and other fossil fuels, is scheduled to be reduced
in the near future.

We make some assumptions to calculate the throughput:
1) the density of agents in operation in the city is limited to
4 within a 1 km × 1 km square. Thus the number of agents
in operation is limited to 928 for Boston; 2) for AOPT, the
agents may use the roof of the entire vehicle (10 agents
on one bus, and 40 agents on one subway); 3) for AAPT,
agents can only take maximally one cabin of the subway
(250 packages) or 20 % of each bus cabin (50 packages);
4) the operation time is from 8 am to 6 pm, 10 hours in
total; 5) subway arrives every 6 minutes for one route (f =
10/hour), while bus arrives every 15 minutes for one route
(f = 4/hour); 6) there are 7 subway lines and 70 bus routes.
In the computation, ma = 1 and TI = 10 hours for all the
cases.

The methods of ground transportation in different hybrid
strategies should be selected carefully. For AAPT, subways
are used as shown in Fig. 2(d), and the package stations are
installed at every subway station. Thus, the packages are only
required to transfer between subways, which is much simpler
and dramatically reduces the system complexity. As a fact,
there are 8047 records of bus stops within the Massachusetts
Bay Transportation Authority (MBTA) system [36], while
there are only 149 subway stations as of 2019 [37].

For AOPT, buses are a better option, at least for Boston,
as it may require the agents to take off to transfer between
public transits, and subway routes in Boston are mostly
underground. The underground part will prevent agents from
taking off. Moreover, there are only 1148 active buses [38],
which is much fewer than the bus stops. The modification
cost for each bus is also much lower compared with the
modification cost for each bus stop in AAPT.

However, in this paper, we will simulate AOPT and AAPT
with both buses and subways to analyze the influence of
different public transit methods on the performance of a
strategy. The notations “-B” and “-S” after the strategy name
denote the simulation with buses and subways, respectively.

B. Simulation Methods

The simulations and calculations of metrics proposed and
defined in Section II rely on the derived agent routes,
especially the takeoff and landing locations. The agent routes
are the minor arcs of the great circles between the two

(a) (b)

Fig. 3. Simulation Setup. Blue lines are the boundary of Boston. The
purple dot is the Amazon warehouse. (a) Boston public transit infrastructure.
Red lines, Green lines, red dots, and orange dots are the subway routes,
bus routes, subway stations, and bus stops within Boston, respectively. (b)
Clustered package delivery tasks. Different clusters are shown with different
colors. Red stars are the cluster centers.

TABLE I
NOISE PERFORMANCE OF DIFFERENT STRATEGIES

Strategy Ea (w · s/m2) Em (w · s/m2) Es

AO 1.69·10-6 3.04·10-5 2.47·10-6

AOPT-B 4.99·10-8 1.26·10-6 6.88·10-8

AOPT-S 3.05·10-7 1.07·10-5 5.90·10-7

AWT 2.13·10-7 2.86·10-6 2.72·10-7

AAPT-B 5.28·10-8 1.03·10-6 6.11·10-8

AAPT-S 4.20·10-7 1.84·10-5 8.66·10-7

locations. All distances in the simulations are the great-
circle distances calculated using Vincenty’s formulae [39].
For AO, the start points and destinations are the distribution
center and package locations, respectively. In the simulation
of AWT, a k-mean cluster algorithm is utilized to find the
cluster centers, which are the destinations of trucks and
the start points for agents. The detail of the algorithm is
shown in [12] with the number of clusters set to be 30.
The results of the clustering are shown in Fig. 3(b). For
AOPT, the start points of agents for each package delivery are
optimized globally along the public transit networks using
a brute force search method, i.e. comparing the minimum
distances from the destination to every route segment. For
AAPT, the algorithm is similar to the one for AOPT, except
that the brute force search only compares the distances from
the destinations to public transit stations.

Noise pollution, energy consumption, and coverage rates
can then be calculated based on the information of agent
routes, agent traveling distances, and agent characteristics
using the models in Section II. The calculations of package
throughput are different and are based on the frequency and
the package volume of agents in the network. The calculation
details are described in Section V.

V. SIMULATION RESULTS AND STRATEGY ANALYSIS

A. Noise

The contour plots of average noise exposure are illustrated
in Fig. 4. The values of Ea, Em, and Es are summarized
in Table I. All three values for AO are the highest. The
higher value of Es represents the lower uniformity of noise
exposure within the region, which agrees with Fig. 4(a) that
the average noise exposure aggregates around the warehouse
since a large portion of the deliveries travel through this area.
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Fig. 4. Contour plots of average noise exposure of (a) AO; (b) AOPT-B;
(c) AOPT-S; (d) AWT; (e) AAPT-B; (f) AAPT-S. Some high noise areas
are highlighted with red circles. Orange lines in (b) and (e) are bus routes.

The performance of AOPT and AAPT is quite close.
However, slight differences can still be noticed. In Table I,
when using subways as the public transit method, AOPT
outperforms AAPT in all three metrics. This is because that
AOPT relaxes the constraints of AAPT that agents can only
take off at the stations. When using buses in the systems,
AAPT outperforms in the aspect of Em and Es.

The performance of AWT is worse than the cases using
buses, but much better than the cases with subways. A slight
aggregation of noise around the cluster centers is found.

Since AOPT-S can launch the agents not only at the
stations but also along the routes, the aggregation in Fig.
4(f) for AAPT-S at the end station of the subway system is
alleviated. Similarly, the aggregation in Fig. 4(e) highlighted
with the red circle and caused by the suddenly enlarged gap
between bus stops is also alleviated in Fig. 4(b).

B. Coverage Rate

Working range WR in the simulations is calculated to be
11.55 km according to (14) and (16). CRs for all strategies,
except for AO, are calculated to be 100 %. CRAO is only
60.60 %.

The histograms for the agent traveling distances are illus-
trated in Fig. 5. The average and maximum one-way agent
traveling distances for different strategies are summarized in
Table II. In Fig. 5, the distribution of AO is much uniform
than other strategies, mainly spreading between 5 km and 17
km. The traveling distances of other strategies significantly
aggregate close to 0 km, which means other methods of
ground transportation travel much further than agents. It is

(e)

(a)

(f)

(b)

(c) (d)

Range limitation

Fig. 5. Histograms of one-way agent traveling distance and ECa of (a)
AO; (b) AOPT-B; (c) AOPT-S; (d) AWT; (e) AAPT-B; (f) AAPT-S; . The
red lines in the figure represent the range limitation of agents.

TABLE II
ONE-WAY AGENT TRAVELING DISTANCE AND ENERGY CONSUMPTION

Strategy
Average
Distance

(km)

Maximum
Distance

(km)

Mean
ECa

(kJ)

Maximum
ECa

(kJ)
AO 10.11 19.44 893.32 1717.72

AOPT-B 0.32 8.24 28.28 728.09
AOPT-S 1.52 8.61 134.31 760.78

AWT 0.90 2.83 79.52 250.06
AAPT-B 0.29 5.37 25.62 474.49
AAPT-S 1.99 9.60 175.84 848.26

demonstrated that the hybrid strategies dramatically reduce
the required agent traveling distances by decentralizing and
relocating the agent start locations.

For both AAPT and AOPT, cases using buses perform
much better than those using subways as the bus routes and
bus stops are much denser than subway routes and subway
stations.

Though the average distance for AWT is longer than
AAPT-B and AOPT-B, the maximum distance for AWT is
much lower. This is because some areas are not covered by
public transits, which requires a longer traveling distance
from the public transit network to the destinations in these
areas. However, AWT can allocate a cluster center after
considering these areas and achieve a much lower maximum
traveling distance.

C. Energy Consumption

The histograms of energy consumption ECa for different
strategies are also illustrated in Fig. 5 using the upper
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TABLE III
STRATEGY PACKAGE THROUGHPUT CALCULATION

Strategy fa PTa fg mg PTg PT
AO 3671.6 36716 - - - 36716

AOPT-B 116000 1160000 280 10 28000 28000
AOPT-S 24421.1 244211 70 40 28000 28000

AWT 41244.4 412444 - - - 412444
AAPT-B 128000 1280000 280 50 140000 140000
AAPT-S 18653.3 186533 70 250 175000 175000

axis. The average values and maximum values of ECa are
summarized in Table II. Since ECa is proportional to the
traveling distances in this case study, the trends and analyses
of ECa are almost similar to those for Coverage Rate CR.

D. Package Throughput

The computation of throughput is summarized in Table
III. The subscript a and subscript g represents agents and
ground transportation.

In the strategy of AO, there is no ground transportation
involved. In the strategy of AWT, we assume that the shipper
can adjust the number of trucks in the fleet subjectively. Thus
the package throughput in these two strategies only depends
on the agents.

The throughput of AO is the lowest since the traveling
distance of agents in this strategy is too long. Given the
number of operating agents is limited by the simulation as-
sumption, the package throughput is limited. The throughput
of AWT is the highest since it is not limited by the ground
transportation. Moreover, the traveling distance for each
package is much shorter because of the delivery trucks and
the decentralization of start points. All other four strategies
are limited by the throughput of ground transportation rather
than agents. AAPT outperforms AOPT in the aspect of
throughput since each subway or bus vehicle can take much
more packages inside the cabins after careful arrangement
than placing the bulky agents on top of the vehicles. The
nature of AOPT that agents travel together with packages
take too much space and reduces mg and the throughput.

E. Delivery Time

The precise comparison of delivery time will require the
exact solutions of the six cases. Thus for this metric, we only
qualitatively analyze and compare the strategies.

Because AO directly delivers the packages to the cus-
tomers, AO is the best for delivery time. AOPT-B should
outperform AAPT-B since the transfer in AOPT is much
more flexible and easier. AOPT only requires the agent to
take off and land on a new public transit to complete the
transfer. In contrast, AAPT will have to rely on the transfer
mechanism at a public transit station. Similarly, AOPT-S
should outperform AAPT-S.

However, the comparisons between AOPT-S and AOPT-
B and between AAPT-S and AAPT-B depend on the char-
acteristics and scheduling of public transit networks. Thus,
it may require getting the exact solutions to continue the
comparison. The analysis of AWT also requires solving the
routing problem, which is one of our future research plans.

F. System Costs

System cost is a significant factor influencing the effec-
tiveness of different strategies. However, the analysis of this
factor is beyond the scope of this paper, which focuses on
the technical part of the hybrid delivery strategies.

VI. CONCLUSION

In this paper, we present an effective and systematic
methodology to evaluate different strategies of automatic
agent delivery. With the help of mathematical modeling
and simulations, we demonstrate that hybrid strategies out-
perform the Agent-Only (AO) strategy in terms of agent
noise, coverage rate, and energy consumption. Moreover,
it is validated that the characteristics of ground transporta-
tion in hybrid strategies dramatically influence the strategy
performance. Last but not least, we propose a new hybrid
agent delivery strategy, Agent-Aided Public Transit Delivery
(AAPT), whose advantages in agent noise, energy consump-
tion, coverage rate, and throughput are validated using the
evaluation methodology proposed in this paper.
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