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Abstract— Perception plays a pivotal role in enhancing the
functionality of autonomous agents. However, the intricate
relationship between robotic perception metrics and actuation
metrics remains unclear, leading to ambiguity in the develop-
ment and fine-tuning of perception algorithms. In this paper, we
introduce a methodology for quantifying this relationship, tak-
ing into account factors such as detection rate, detection quality,
and latency. Furthermore, we introduce two novel perception
metrics for Human-Robot Collaboration safety predicated upon
basic perception metrics: Critical Collision Probability (CCP)
and Average Collision Probability (ACP). To validate the utility
of these metrics in facilitating algorithm development and
tuning, we develop an attentive processing strategy that focuses
exclusively on key input features. This approach significantly
reduces computational time while preserving a similar level of
accuracy. Experimental findings demonstrate that integrating
this strategy into an object detector results in a notable
maximum reduction of 30.09% in inference time and 26.53%
in total time per frame. Additionally, the strategy lowers the
CCP and ACP in a baseline model by 11.25% and 13.50%,
respectively.

I. INTRODUCTION

Intelligent agents and machines, such as robots [1], [2],
autonomous vehicles, and machines [3], [4], [5], [6], [7],
are becoming increasingly important in human daily life and
industrial applications. They require perception algorithms
to sense and understand the dynamic environment fast and
accurately, dynamic planning algorithms to proactively up-
date the plan, and control algorithms to generate the control
commands [8]. This is the so-called pipeline frameworks for
autonomous agents. Perception is an important but compu-
tationally expensive component.

However, an intensive literature review shows that several
issues and shortcomings still exist. First, the relationship
between the metrics of perception tasks and the metrics
of the robot tasks is unclear. Researchers working on a
specific perception problem focus on improving the metrics
for the specific perception task. However, the ultimate goal
of perception algorithms is for real-world applications. Thus,
a model, that is beneficial for understanding the effect of
the perception performance on robot performance, is de-
sired and necessary. Second, the accuracy-speed-tradeoff is
an inevitable issue when developing and tuning perception
models. Neither a perfectly accurate algorithm with a slow
inference speed nor a fast algorithm with a very low accuracy
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is desired for autonomous agents. However, there are no
models for understanding this problem and no guidelines
for finding the optimal balance points when tuning models.
Third, many papers and benchmarks in perception focused on
and reported the accuracy aspect of metrics, such as classifi-
cation accuracy, precision, recall, F-1 score, AUC-ROC, etc.
We would like to argue, in this paper, that the speed aspect is
crucial in applications that require real-time decision-making
and reaction to the dynamic environment, such as robotics,
autonomous vehicles, remote surgery, surveillance, etc.

In order to mitigate or address the above-mentioned issues,
we develop and propose a methodology to model the robot
performance metrics based on basic perception task metrics.
We first separate and decouple the basic perception metrics
into three categories, namely the algorithm’s detection rate,
detection quality, and latency. Then, we investigate and dis-
cuss their influence on robot safety metrics separately. Here,
we take the safety issues in Human-Robot Collaboration
(HRC) tasks as an example. We propose two new perception
metrics for HRC, called Critical Collision Probability (CCP)
and Average Collision Probability (ACP), which link the
basic perception metrics to the safety performance of the
robot in real-world deployment and can be used to optimize
perception tasks. We preliminarily validate our modeling
with the analysis of the attentive processing strategy. The
trends of the model agree well with realistic situations.

To demonstrate the usefulness of the modeling and the
metrics, we further develop and propose a new strategy to
improve the safety of HRC benefiting from our models by
enhancing the inference speed of the algorithm while main-
taining similar accuracy, which is inspired by how human
brains process information. One essential difference between
human beings and machines is that human beings weigh
the priority and importance of different tasks and inputs,
process the essential components with more resources, and
dynamically adjust the focus based on task characteristics or
other guidance. This mechanism has been studied extensively
and verified with examples, e.g., foveal-peripheral vision [9],
[10], inattentional blindness [11], change blindness [12], etc.

Inspired by these functions and their effectiveness in
human perception, it would be desirable for machines to se-
lectively process the essential components determined by the
characteristics and states of the tasks and surrounding agents.
Another inspiration of this attentive processing method is the
nature of visual inputs, that only a small portion of the visual
inputs are related to the task or the short-term decision mak-
ing. Thus, respecting this nature can dramatically decrease
the computation resources required, accelerating the model
inference or reducing the hardware requirements and energy



consumption for large model inference.
To this end, we develop and propose a new generic strategy

applicable to most computer vision tasks, i.e., attentive
processing. In this strategy, the algorithm focuses on and
processes only the essential components related to the task
with an ensemble of neural networks with different scales.
Firstly, we dynamically update the attentive region based on
the results from previous frames, respecting the continuity
of agent states in real-world applications. Secondly, only
the local information within the attentive region is fed into
the neural network with the corresponding scale to reduce
unnecessary processing in a larger-scale network. Thirdly,
the processing of the attentive region results is mapped
back to the global input frame. Then, information from the
current frame is processed with a much more efficient and
lightweight neural network instead of processing every pixel
in the global frame with a denser and deeper neural network.
The results of the current frame can guide the selection of the
attentive region for the next frame. This strategy can be used
along with most computer vision algorithms as an additional
layer to select only the essential components for processing.
In this paper, we use a video object detection task as a case
study for verification and validation purposes.

To summarize, the contributions of this work are three-
fold: (i) A methodology for modeling robot performance
metrics based on perception metrics. Here, we use HRC
safety metrics considering object detection recall, IoU, and
latency, as a case study. (ii) We model and propose two
novel comprehensive perception metrics considering speed-
accuracy-tradeoffs, namely ACP and CCP, in the context
of HRC tasks, reflecting HRC safety. Thus, optimization
of perception algorithms based on our metrics can directly
optimize the HRC safety. (iii) A new generic attentive
processing strategy on top of efficient learning methods to
select, track, and update the essential components in input
information for reduced computation resource requirement
and effort by utilizing the sparsity in input data. Experiments
verify that the attentive processing strategy can enhance
safety and speed in human-robot collaboration.

II. RELATED WORK

To the best of our knowledge, our work is very unique. The
following sub-sections provide a summary of works closely
related to ours.

A. Perception and Robot Metrics

Investigation and analysis of the relationship between
perception and robot metrics are crucial. Some previous
works analyze the relationship between latency and robot
performance [13], [14], [15], [16]. The most related work
to ours is [17], which modeled and analyzed the influence
of visual latency on high-speed sense and avoidance in a
drone application. This work also demonstrated and verified
the effectiveness of event cameras in high-speed applications.
However, this work doesn’t include detection rate and detec-
tion quality in the analysis, and it poses strong assumptions
(e.g., unchanged longitudinal velocity) in the analysis, which

are difficult to generalize to other applications. Our work is
more comprehensive, including detection rate and quality,
and suitable for generic collision avoidance problems.

B. Efficient Deep learning

Accelerating and decreasing the computation resource
requirements of model inference is an active research area.
Methods, including quantization [18], [19], [20], [21], deep
compression [22], knowledge distillation [23], sparsification
[24], and pruning [25], [26], [27], [28], have shown promis-
ing results in the application of edge devices with limited
computational resources. These methods tweak the architec-
ture and the precision of the neural networks themselves to
remove unnecessary connections and components, reducing
the precision of weights and activations, and/or replacing
the large network with a more efficient network. However,
none of these utilizes the sparsity of the input features. Our
methods can work along with these efficient deep learning
methods by distilling only important features for processing.

III. SAFETY METRIC MODELING

A. Problem Setup

The problem setup is shown in Figure 1. In this model,
we consider a general HRC problem, where the human
subjects focus on their own tasks, and the robot facilitates by
conducting some other auxiliary tasks. The robot executes the
planned path until a human is detected within a safety range
by an object detector or human pose estimator. After the
detection, the robot either re-plans the path or stops in urgent
situations. In this model, for simplicity, we assume that the
robot slows down after detecting, and speeds are assumed
constant during the frames considered. Our future work will
consider the more complex situations with arbitrary motion
of human hands and robots.

Without loss of generality, we assume that the camera
is fixed in the world coordinates. Thus, all variables are
denoted in the camera coordinates. We denote the gripper
as object A with a spherical safety margin sA and the hand
as object B with a spherical safety margin sB. The parameter
sA, or sB, is the radius of the safety margin. Here, we assume
that the safety margins are the same as their sizes. For the
human hand, which is detected by perception algorithms,
we distinguish the ground truth B and its estimate B̂ to
clearly analyze the effect of detection quality. The location
of robot A can be derived through encoders and kinematics,
whose error is smaller. Here, we only distinguish B and B̂
for analysis of detection quality and use B̂ to represent the
location of B.

In the camera coordinates, the position vectors of A
and B̂ are RA and RB̂, respectively, with velocity vectors
UA = ṘA and UB̂ = ṘB̂. The position vector from A to B
is RAB̂ = RB̂ −RA. The distance between A and B can be
calculated as dAB̂ = |RAB̂|. Collision in this paper is defined
when the condition dAB̂ < sA + sB is true. The velocity of
A relative to B can be calculated as UAB̂ = UA −UB̂. The
illustration of variables to calculate collision condition after
being projected to the plane containing UAB̂ and RAB̂ is
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Fig. 1. Problem setup with camera coordinates and necessary variables for
analysis.
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Fig. 2. The illustration of collision condition. (a) critical condition (object
A and B collide in a tangent manner); (b) general condition (α ∈ [−αc,αc]).
(c) general condition after considering the detection shift.

shown in Figure 2. The angle between RAB̂ and UAB̂ is
defined as α . The critical condition can be re-written as
αc = arctan

(
(sA + sB)/

√
|RAB̂|2−(sA + sB)2

)
. The collision

condition can only happen when α ∈ [−αc,αc]. Under this
condition, the maximum safe travel distance L without con-
sidering the bounding box shift can be calculated as follows

L = |RAB̂|cosα −
√
(sA + sB)2 −|RAB̂|2sin2

α (1)

B. Effect of Latency

The total latency per frame Tt from sensory input to
successful response can be decomposed as follows

Tt = Tp +Tr (2)

where Tp and Tr are the latency for perception and
response, respectively. Tr affects the allowable traveling
distance before collision. The effect of Tp is reflected in the
number of possible frames to detect humans before collision.

C. Effect of Detection Rate

The detection rate considers that the algorithms generate
false negatives, which can be fatal. In perception tasks, for
one frame, the probability of successful detection equals
recall of the algorithm, which means Pd =Recall. We assume
that frames are independent. Then, we define a random
variable k as the average number of frames needed for

the algorithm to make a successful detection. k follows a
Geometric Distribution as follows:

k ∼ Geo(Pd = recall) (3)

D. Effect of Detection Quality

Detection quality metrics in perception include Intersec-
tion over Union (IoU), Mean Average Precision (mAP),
F1 score, etc. Here, we use IoU as the detection quality
metric. We assume that the camera is homogeneous in
its imaging plane o′x′y′ without skewness and distortion.
Because of the linear operation in the camera imaging model
and the dimensionless property of IoU, IoU for the object
on the image plane equals IoU of the object in the world
coordinates. Thus, according to the IoU in the image plane,
we can derive the distance between the real object and the
predicted bounding box in the world coordinate.

The IoU under these assumptions is calculated as follows

IoU =
(sB −b)2

2s2
B − (sB −b)2 (4)

where b is the shift between the real location of the object
and the predicted location in the world coordinate in the
direction of x or y. We can derive the value of b from (4) as

b = sB

(
1−

√
2IoU√

IoU +1

)
(5)

Thus, the total maximum shift in the world coordinate
is

√
2b. According to the geometrical relationship shown in

Figure 2(c), the safe traveling distance decreases by ∆, which
is the shift of A along L because of the detection shift of B.
Here, we consider the maximum effect of b on L. Thus, we
derive the maximum safe traveling distance Ls as

(6)
Ls = max

(
0,L−

(√
(sA + sB +

√
2b)2 − |RAB̂|2 sin2

α

−
√

(sA + sB)2 − |RAB̂|2 sin2
α

)
− |UAB̂|Tr

)
E. Safety Metrics

After considering all the factors discussed above, we could
derive the probability of collision Pc as follows:

Pc =

{
P(k > m) = (1−Pd)

m, if α ∈ [−αc,αc]

0, otherwise
(7)

where m is the number of frames processed by the
perception algorithm before traveling the distance Ls and
calculated as follows:

m =

⌊
Ls

|UAB|·Tp

⌋
(8)

A larger m means more input frames are available to the
algorithm before collision.



1) Critical Collision Probability CCP: Critical Collision
Probability CCP is an important metric, which represents
the average collision probability under critical and dangerous
conditions. CCP is defined as

CCP = Eα,|RAB̂|,|UAB̂|∈C[Pc] (9)

where E is the expectation operator, C is the region of
critical conditions. In this condition, α , |RAB̂|, and |UAB̂|
may be correlated. An example of the parameter selection is
discussed in the Experiments section.

2) Average Collision Probability ACP: Further, we define
another safety metric Average Collision Probability ACP,
which is the expectation of collision probability over appli-
cable parameter space representing the average performance
over a wide range of conditions, as

ACP = Eα,|RAB̂|,|UAB̂|∈D[Pc] (10)

where D is the parameter space for the application. The
value of ACP represents the average collision probability
under all robot operation conditions.

The two metrics can be considered separately or jointly
with weight either as an evaluation protocol of perception al-
gorithms or as a training objective for perception algorithms.

IV. ATTENTIVE PROCESSING STRATEGY

The working principle of the proposed attentive processing
approach is shown in Figure 3. The main components of the
framework can be decomposed into Input Feature Prepro-
cessing (IFP), Efficient Inference (EI), and Result Mapping
(RM). We use video object detection, which is important for
robotics perception, as an example for illustration purposes.

A. Input Feature Preprocessing

1) Attentive Region Generator: For the current input
frame I, the attentive regions containing the attentive features
are selected by the Attentive Region Generator (AGG) based
on past results.

Three methods can serve this purpose: prediction-based,
expansion-based, and hybrid. The prediction-based integrates
lightweight prediction to predict the attentive region for
the current frame based on the bounding box information
from the past frames [29]. The expansion-based method sets
the attentive regions for the current frame by expanding
the bounding box from the last frame so that it has high
confidence in including the attentive object in the attentive
region. The expansion scale can be dynamic based on the
characteristics of bounding boxes in past frames. Hybrid
methods can combine both prediction and expansion.

2) Aggregation Method Optimizer: Aggregation Method
Optimizer determines the methods to aggregate patches or
regions optimally. Two options are stitching regions into one
input [30] or processing different regions individually. The
second option can also reserve optimality in some cases since
we found that twice of the lightweight model inference time
may still be faster than the heavyweight model sometimes.

3) Input Feature Aggregation: This module transfers the
input frame I to I′ based on the attentive region selected
and the aggregation method selected. After the Input Feature
Preprocessing module, the original input I is reorganised into
a new feature input I′.

B. Efficient Inference with Ensemble of Networks

In this component, we scale down the full-resolution object
detection network to form an ensemble of models with
different input sizes. The set of ensembled neural network
input sizes is defined as K. The size of the model selected
by the Network Selector (NS) is o = min(O), where O is the
subset of K larger than the size of I′. Then, I′ is processed
by the model M(o) with input size o.

C. Result Mapping

In the last step, the results derived from I′ are mapped
back to the global image I. With this step, we obtain the final
results in the original input coordinates for other downstream
robot tasks.

V. EXPERIMENTS

A. Dataset

We use the LaSOT dataset [31] as the proof-of-concept
validation of our strategy on video object detection of
one object to verify the effectiveness of our strategy in
dramatically reducing the computation complexity while
maintaining accuracy and recall. The videos in the LaSOT
dataset resemble the RGB input of a general HRC robot
working in the wild and with human beings.

To make the dataset applicable to our testing, we screened
all video sequences in LaSOT with the following criteria:
(1) The object should also be included in the dataset for
training the baseline object detector. In this paper, we use
You Only Look Once v7 (YOLOv7) [32] as the baseline
object detector, which utilizes the COCO dataset [33] while
training. For YOLOv7, we use models W6, E6, and D6
as baseline models; (2) LaSOT is a single object tracking
dataset, which only contains at most one bounding box on
each frame, but perhaps with more than one target object in
the frame. To avoid vagueness and confusion on the object
detector, we selected the video sequences with only one
object from the target class on each frame. (3) To conduct
tests on LaSOT without transfer learning, we selected video
sequences where at least 50% of objects can be detected
with the baseline object detector. (4) The minimum edge
length of the image is larger than 640. After the dataset
screening, 79 video sequences from LaSOT were selected
from 18 categories with a total of 243,076 frames.

B. Implementation Details

The testing is conducted on a TITAN RTX GPU with
24 Gb memory. We use YOLOv7 object detectors with an
input size of 1280 by 1280 as the baseline models for all the
testing. For all videos, the ensemble of networks is composed
of one default model and three other models downscaled
from the default model. The confidence threshold in the
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model is set as 0.1. The expansion rate for LaSOT in AGG
is set to 2.

C. Metrics

For the perception performance evaluation, we use the
metrics inference time, total time (inference time + time for
other overhead computation), Average Recall (AR), average
IoU, and average precision AP at IoU of 0.5 and 0.75.
AR and AP are calculated according to COCO evaluation
protocol, in percentage.

When computing ACP, we use the following D:
α ∈ [−π,π], |RAB|∈ [0.25 m,1.5 m], and |UAB|∈
[0.02 m/s,1 m/s]. And Tr = 0.1 s. When computing
CCP, we use the following C: |UAB|∈ [0.02 m/s,1 m/s],
|RAB|∈ [0.25 m,max(0.25m,0.5s · |UAB|)], and α ∈ [−αc,αc].

D. Results on Perception Metrics

The testing results are summarized in Table I. Our strategy
outperforms by a large margin in both inference time and
total time per frame, while only sacrificing a fairly small
amount of accuracy on all baseline models. The percentage
of reduction in inference time and total time increases
with the baseline model complexity. After comparing the
inference time and total time for each model, it was found
out that the overhead computation time for our strategy and
baseline models is almost the same. This demonstrates that
the components within our framework shown in Figure 3 are
very lightweight and fast to compute.

As shown in Figure 4, the average inference time of the
neural networks, after scaling down because of the decreased
input size, is much shorter. With a high probability, a larger
bounding box size ratio (bounding box size over the size of
input frame I) corresponds to a larger input size model and,
thus, a higher inference time.

During our testing, the main source of accuracy decrease
in this preliminary testing is analyzed. It is found that the
smaller model, though fast, is the main source of inaccuracy
because of the model scaling in this testing. However, our
strategy has a strong potential to overcome this bottleneck
and achieve improvement in both computation complexity
and accuracy by training from scratch or fine-tuning the
lower input size models. The lower input size models only
require processing the inputs with objects almost in the center

Fig. 4. Inference time with respect to different bounding box size ratios
using models with various input sizes. Each dot represents one frame.

and almost with the same scale because of the cropping
operation in the framework. This avoids the location variance
and scale variance in object detection. Thus, with these
methods, the accuracy has the potential to be improved while
maintaining efficiency.

E. Results on the Safety Metrics

ACP and CCP with various models are summarized in
Table II. With our proposed attentive processing strategy, the
ACP and CCP decrease by a large margin, which verifies the
effectiveness in improving safety in HRC. Computationally
expensive models in the testing are slower to achieve state-
of-the-art accuracy and precision on the benchmark. Our
strategy works better for those computationally expensive
models and reduces CCP and ACP on model D6 by 11.25%
and 13.50%, respectively. Even though model D6 achieves
the highest IoU, AR, and AP as shown in Table I, its slow
processing speed makes model D6 the most dangerous model
for HRC as shown in Table II. This validates the importance
of examining the speed-accuracy-tradeoffs and developing
faster real-time algorithms in robotics applications.

The following analysis is based on model E6. The collision
probabilities with various |UAB̂| and |RAB̂| are shown in
Figure 5 (a) and (b). When the distance |RAB̂| is short with
a high relative velocity |UAB̂|, the collision probability is
1 for both baseline and attentive processing. This agrees
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TABLE I
TESTING RESULTS ON LASOT DATASET WITH THREE BASELINE MODELS. ↑ AND ↓ INDICATE LARGER OR SMALLER IS BETTER. TESTING RESULTS

VERIFY THAT OUR STRATEGY IS EFFECTIVE IN REDUCING COMPUTATION TIME WHILE MAINTAINING ACCURACY ON ALL BASELINE MODELS.

Metrics YOLOv7-W6 YOLOv7-E6 YOLOv7-D6
Baseline Ours Change % Baseline Ours Change % Baseline Ours Change %

Inference time ↓ 24.38 18.58 -23.79% 34.76 25.04 -27.98% 42.90 29.99 -30.09%
total time ↓ 30.35 24.47 -19.38% 40.60 30.88 -23.94% 48.79 35.85 -26.53%

overhead time ↓ 5.97 5.89 -1.34% 5.83 5.85 0.19% 5.89 5.85 -0.62%
AR ↑ 88.98 87.97 -1.13% 89.87 88.67 -1.33% 90.38 89.17 -1.34%
IoU ↑ 0.74 0.73 -1.22% 0.75 0.74 -1.50% 0.76 0.74 -1.51%

AP0.5 ↑ 91.98 92.02 0.03% 92.58 92.51 -0.08% 92.69 92.61 -0.09%
AP0.75 ↑ 79.39 78.95 -0.55% 79.94 79.49 -0.57% 80.45 79.94 -0.63%

TABLE II
COLLISION METRICS WITH VARIOUS MODELS

Model Metrics Baseline Attentive Processing ↓%

W6 CCP 0.46 0.43 6.51%
ACP 5.78·10−3 5.36 ·10−3 7.27%

E6 CCP 0.51 0.46 9.20%
ACP 6.54·10−3 5.83 ·10−3 10.81%

D6 CCP 0.55 0.49 11.25%
ACP 7.17·10−3 6.20 ·10−3 13.50%

well with the realistic case since, in these circumstances, the
robot doesn’t have sufficient time to process the perception
or avoid the obstacle. As the velocity decreases or the
distance increases, the collision probability decreases in a
step function style because the values of m in equation (8) are
integer and discrete. The collision probability is very small
for a large distance and small velocity, which also agrees well
with the realistic case. The modeling of collision probability
is preliminarily validated.

The collision probability decrease in percentage after
adopting our strategy is shown in Figure 5 (c). When the
collision probabilities are 1, the change percentage is 0. The
main difference between the attentive processing and the
baseline is in the computation time Tp, recall AR, and IoU .
As the distance increases and/or the velocity decreases, the
collision probability with attentive processing decreases from
1 first, which causes a jump in the percentage decrease. The
reason for this is the short computation time Tp so that the
robot can obtain the information for at least one frame with
short |RAB̂| or large |UAB̂|. However, when the baseline can

process the same amount of frames, the collision probability
with attentive processing is higher due to the lower accuracy,
which is the reason for the negative decrease percentages
in some cases. However, these cases become rare when the
distance and the velocity further increases and decreases,
respectively. Our model of the metric successfully represents
this accuracy and speed tradeoff.

VI. CONCLUSION

In this paper, we first develop a methodology to under-
stand and model the relationship between robot metrics and
three major categories of perception metrics, i.e. detection
rate, detection quality, and latency. We further develop and
propose two new HRC perception metrics based on basic
perception metrics. To underscore the effectiveness of our
methodology, we develop and propose a novel attentive
processing strategy that selects the attentive regions con-
taining the essential components in the input, processes the
attentive regions efficiently with an optimal model within an
ensemble of networks, and finally maps the results back onto
the input frame. Our strategy consistently outperforms the
baseline models in speed and significantly reduces the total
computation time and inference time of an object detector
by 26.53% and 30.09% while maintaining a similar level of
accuracy. Experiments verify that our strategy dramatically
reduces CCP and ACP by 11.25% and 13.50%, respectively,
enhancing HRC safety. With this work, the importance of fast
and real-time processing is also demonstrated and verified.
Hence, we have successfully addressed the three concerns
raised in Section I.
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